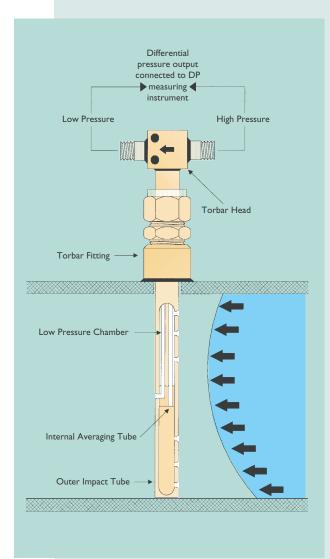
TORBAR®

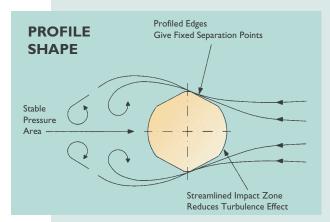
INCORPORATING

TRIBAR & MASS TRIBAR

FOR DEPENDABLE FLOW MEASUREMENT

WHAT IS A TORBAR?


The **TORBAR** is a multiport self-averaging flow meter with a design based on the classical pitot tube concept of fluid flow measurement.


Since the introduction of the **TORBAR** in 1985, thousands have been installed into a wide variety of industries world wide.

A comprehensive list of major projects and letters of reference from international companies are available on request.

HOW TORBAR WORKS

TORBAR produces an averaged differential pressure (DP) signal proportional to the square of the flow rate, (See Differential Pressure Calculations on page 11).

The DP output is normally piped to a Differential Pressure Transmitter in order to generate an electrical signal proportional to the flow rate. A D.P. gauge or switch can be used to provide local mechanical indication or flow rate switching. For certain applications, the DP Transmitter can be directly mounted on to the **TORBAR** via an integral 3 valve manifold. The total flowmeter package is called a **TRIBAR**. Full details are given on pages 16 & 17. The mass **TRIBAR** includes for pressure and temperature compensation. Full details are given on pages 18 and 19.

Each **TORBAR** is designed to span the process pipe diameter and comprises four basic components:

- Outer impact tube ONE PIECE CONSTRUCTION
- Internal averaging tube
- Low pressure chamber
- Head

The outer impact tube has a number of pressure sensing holes facing upstream which are positioned at equal annular points in accordance with a log-linear distribution.

The "total pressures" developed at each upstream hole by the impact of the flowing medium are firstly averaged within the outer impact tube and then to a second order (and more accurately) averaged within the internal averaging tube. This pressure is represented at the head as the high pressure component of the DP output.

The low pressure component is generated from a single sensing hole located on the downstream side of the outer impact tube. For bi-directional flow measurement, the **TORBAR** can be supplied with the same number of downstream ports as upstream. Bi-directional sensors have an inherently lower mechanical strength than the standard **TORBAR** and the figures for Maximum Allowable DP on page 11 should be reduced by 50%.

PROFILE SHAPE - The **TORBAR** is an improvement on the round sensor design due to the unique profiled flats which are positioned around the downstream hole in order to define the separation point at which the flow lines "break-off" as the fluid passes around the outer impact tube. This feature creates a stable pressure area at the downstream pressure sensing hole thereby maintaining a more constant flow co-efficient K at high velocities enabling a very wide range of flow measurement (turndown).

PROBLEM FLUIDS

The **TORBAR** is NOT suitable for the measurement of 2 phase fluids or when the fluid does not completely fill the cross section of the pipe.

Satisfactory flow measurement can be achieved for certain contaminated gas flows (such as flue gas) by using an air purging system. See page 15 for brief details of purge units. For water flows which may contain a small amount of air, an air-venting package is recommended.

FEATURES

- Unique profile shape enables high flow turndown
- Dual averaging for better accuracy
- One-piece outer tube for optimum strength
- Suitable for pipe sizes from 10mm to 5000mm (and larger with a special 2 piece construction)
- Suitable for square or rectangular section ducts
- Available as hot-tap for insertion into pressurised pipes
- Optional direct mounting transmitter arrangement (see TRIBAR on pages 16 & 17)
- Zero co-efficient drift ensures long term stability
- Low permanent pressure loss means low energy consumption and significant cost benefits

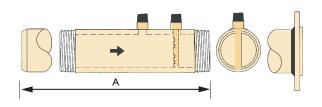
GENERAL SPECIFICATIONS

- TORBAR is suitable for liquid, gas, and steam flow measurement
- Accuracy ± 1% of actual flow rate verified by independent flow laboratories
- Repeatability of measurement ± 0.1%
- Reynolds number. Minimum Re:1.2x10⁴
- Flow rate turndown typically 10:1 (100:1 of DP) The restriction being the resolution of the transmitting device under a square root relationship.
- Maximum working pressure up to 500 bar with selected models, materials and fittings
- Maximum working temperature up to 600 deg. C with selected models, materials and fittings
- Maximum viscosity 200 cp (mPas)
- Short upstream and downstream straight pipe lengths
- Long term accuracy unaffected by wear

CONSTRUCTION

- TORBARs are engineered and manufactured to stringent routines including BS, ANSI, ASME, ISO and DIN standards
- Welding is carried out by Lloyds qualified welders to ASME IX and European standards.
- Quality control system is approved to BS EN ISO 9001:2000
- CE marking in conformance with 97/23/EC PED.
- Russian Pattern Approval details available
- Chinese Type Approval details available
- TORBARs are leak tested before dispatch.
- NDE is available by request for all models.
- Standard material of construction is 316L stainless steel but many other materials are available on request.
- All TORBARs have full material traceability.
- Hydrostatic Pressure Test Certificates available.
- Material test certificates to EN 10204 (DIN 50049) and certificates of conformity are available for each component part of every TORBAR
- Stainless steel data plate as standard.

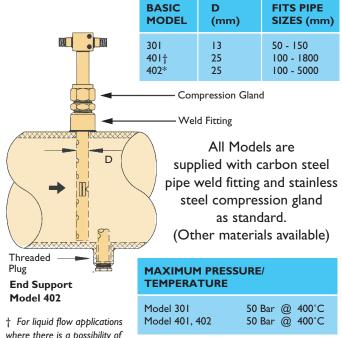
INDEPENDENT FLOW TESTS


The **TORBAR** accuracy and repeatability of measurement has been verified by independent testing laboratories in the United Kingdom. Refer to page 10 for more details.

PERMANENTLY INSTALLED TYPES

MODEL SPECIFICATION

IN LINE FITTING

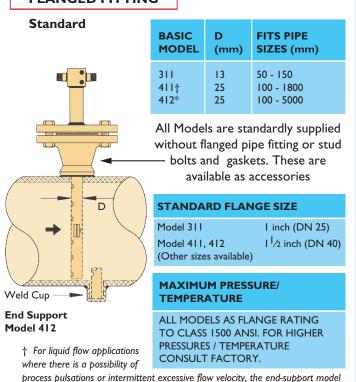


BASIC MODEL	END FITTINGS	FITS PIPE SIZES (mm)
121	Butt Weld	
122	Threaded	13 - 50
123	Flanged	

All models are supplied with a pipe section in the same material as TORBAR probe

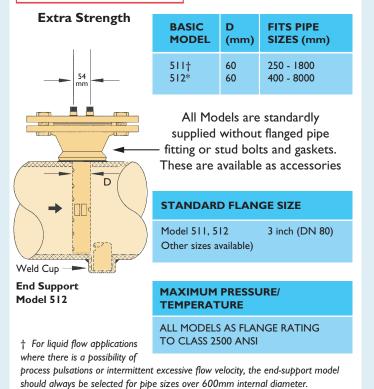
PIPE SIZE (INS.SCH80)	'A' (mm)	MODEL	MAXIMUM PRESSURE/ TEMPERATURE
½"	200	121	50BAR/450°C
1"	225	122	50BAR/200°C
1½"	300	123	As flange rating to CLASS 900 ANSI
2"	400		

THREADED FITTING



where there is a possibility of

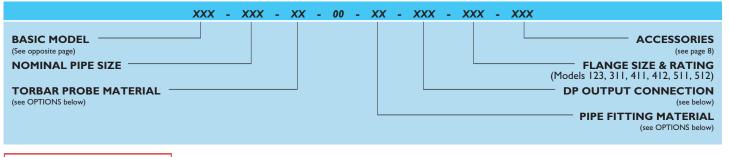
process pulsations or intermittent excessive flow velocity, the end-support model should always be selected for pipe sizes over 250mm internal diameter.


* With end support

FLANGED FITTING

should always be selected for pipe sizes over 250mm internal diameter.

FLANGED FITTING



* With end support

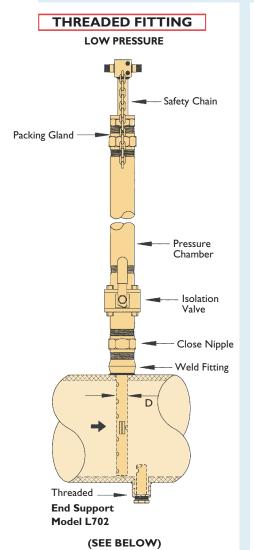
* With end support

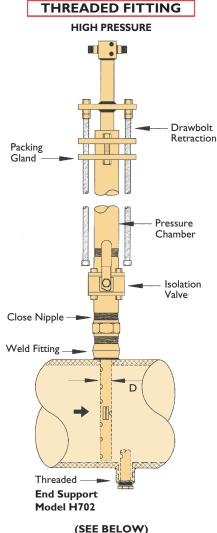
PERMANENTLY INSTALLED TYPES

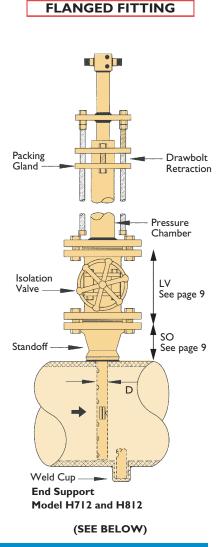
MODEL CODING

OPTIONS

DP OUTPUT CONNECTIONS x x x


VALVE MATERIAL CODE CODE CODE **VALVE TYPE SIZE** DM TYPE HEADS (See Accessories page 8) 0 No valves 0 0 No valves DM or DM3V HEAD 0 DM or DM3V HEAD 0 3 1/4" NPT Brass В В Ball 1/4" BSPT 4 Carbon Steel С Needle ٧ 7 ½" NPT 316L Stainless Steel S G Gate ½" BSPT 8 Monel 400 (Or Alloy 400) ML Globe L ½" WELD (MALE) 6 UNS 31254 (6MO) ۷D Double Block/Bleed 6M 9 ½" FLANGED Hastelloy (C276) HC 1/2" NPTF ELBOW MOUNT 5 Other **SPECIFY SPECIFY OTHER**


NOTE: For a female output connection WITHOUT valves, add 'F' to size-code. eg: 4" NPT female connection without valves, code is 003F.


MALE WITHOUT VALVES	FEMALE WITHOUT VALVES	FLANGED WITHOUT VALVES	
Code Example: 007 (½" NPT)	Code Example: 006F (½" Weld Socket)	Code Example: 009 (½") (SPECIFY PRESSURE CLASS)	
WITH NEEDLE VALVES	WITH BALL VALVES	WITH GATE VALVES	
Code Example: SV4 (ST. ST. 1/4" BSPT)	Code Example: BB3 (BRASS. ½" NPT)	Code Example: CG8 (Carbon ST. ½" BSPT)	
DIRECT MOUNT HEAD	DIRECT MOUNT SEPARATE MANIFOLD	DIRECT MOUNT INTEGRAL MANIFOLD	
Code: 000 Specify Accessory: DM	Code: 000 Specify Accessory: 3VDM (3 Valve) 5VDM (5 Valve)	Code: 000 Specify Accessory: DM3V Bolting = 4 x M10 x 30mm (Others available)	

WITHDRAWABLE TYPES (HOT TAP)

MODEL SPECIFICATION

Models L702, H702, H712 and H812 should not be installed into a pressurised pipe because of the requirement to fit an end support. Refer to detailed installation instructions.

BASIC	D	FITS PIPE
MODEL	<u>(mm)</u>	SIZES (mm)
L601	13	50 - 150
L701†	25	100 - 1800
L702*	25	300 - 3000

Supplied with weld fittings, isolation valve and pressure chamber with safety chain as standard. Gland packing material is standardly supplied as non-asbestos graphite ribbon. Teflon is available. Please specify at time of order. For isolation valve details - see page 7.

MAXIMUM PRESSURE / TEMPERATURE

With standard ball valve 10 bar and 200°c With standard gate valve 10 bar and 400°c (Temperature is at valve)

† For liquid flow applications where there is a possibility of process pulsations or intermittent excessive flow velocity, the end-support model should always be selected for pipe sizes over 250mm internal diameter. *with end support

BASIC MODEL	D <u>(mm)</u>	FITS PIPE SIZES (mm)
H601	13	050 - 150
H701†	25	100 - 1800
H702*	25	300 - 3000

Supplied with weld fittings, isolation valve, pressure chamber and draw bolt retraction (illustrated) as standard. Gland packing material is standardly supplied as nonasbestos graphite ribbon. Teflon is available. Please specify at time of order. Geared retraction - optional (see page 8). For isolation valve details - see page 7.

MAXIMUM PRESSURE / TEMPERATURE

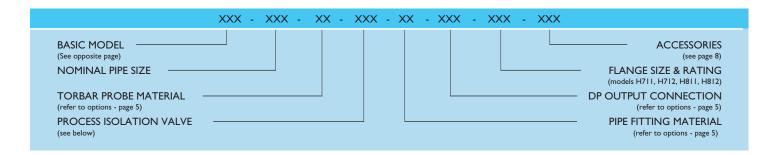
With standard ball valve 40 bar and 200°c With standard gate valve 40 bar and 400°c (Temperature is at valve)

† For liquid flow applications where there is a possibility of process pulsations or intermittent excessive flow velocity, the end-support model should always be selected for pipe sizes

over 250mm internal diameter. kwith end support

BASIC MODEL	D (<u>mm</u>)	FITS PIPE SIZES (mm)	STANDARD FLANGE SIZE
H611	13	50 - 150	1½"(DN40)
H711†	25	100 - 1800	1½"(DN40)
H712*	25	300 - 3000	1½"(DN40)
H811†	60	300 - 2000	3"(DN80)
H812*	60	600 - 3000	3"(DN80) other sizes available

Supplied with isolation valve and pressure chamber, and draw bolt retraction assembly and without flanged pipe fitting or stud bolts and gasket (Available as accessories - page 8). Gland packing material is standardly supplied as non-asbestos graphite ribbon. Teflon is available. Please specify at time of order. Geared retraction - Optional (see page 8). For isolation valve details - see page 7.


MAXIMUM PRESSURE / TEMPERATURE

With standard ball valve 100 bar and 200°c With standard gate valve 100 bar and 400°c (Temperature is at valve) (Pressure is 35 bar for H811, H812)

† For liquid flow applications where there is a possibility of process pulsations or intermittent excessive flow velocity, the end-support model should always be selected for pipe sizes over 250mm (MODEL H712) 600mm (MODEL H812) internal diameter. *with end support

WITHDRAWABLE TYPES (HOT TAP)

MODEL CODING

PROCESS ISOLATION VALVES

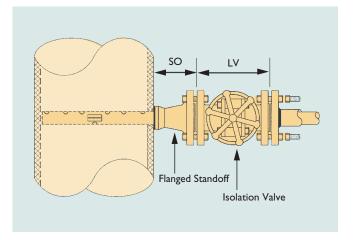
VALVE TYPE	TORBAR MODEL	VALVE SIZE	CODE (* IS MATERIAL SEE BELOW)	MAXIMUM TEMPERATURE AT VALVE
Threaded Ball	L601	¾" BSPT	5B*	200°C
	H601 L701 L702 H701 H702	I¼" BSPT	7B*	200°C
Threaded Gate	H601 L701 L702 H701 H702	I¼" BSPT	7G*	400°C
Flanged Ball	H611	1½"	8B*	200°C
	H711	I½"	8B*	200°C
	H712	2"	6B*	200°C
	H811 H812	3"	9B*	200°C
Flanged Gate	H611	1½"	8G*	400°C
	H711	1½"	8G*	400°C
	H712	2"	6G*	400°C
	H811 H812	3"	9G*	400°C

Code * defines valve material

316SS - (S) CARBON STEEL - (C) MONEL - (ML) FOR OTHER MATERIAL SPECIFY
(EXAMPLE: 7GC IS 11/4" BSPT GATE VALVE IN CARBON STEEL).

When valve is supplied by purchaser, whole code is: XXX.

DESCRIPTION	MODELS	ILLUSTRATION	CODE
Vertical Pipe Installation	301, 311, 401, 402, 411, 412, 511, 512, L601, L701, L702, H601, H701, H702, H611, H711, H712, H811, H812	1	VS
	121, 122, 123		
Head for Direct Mounting of Valve Manifold or Transmitter	301, 311, 401, 402, 411, 412, 511, 512, L601, L701, L702, H601, H701, H702, H611, H711, H712	24	DM
Direct Mounting Head fitted with 3 or 5 Valve Manifold	301, 311, 401, 402, 411, 412, 511, 512, L601, L701, L702, H601, H701, H702, H611, H711, H712		3VDM (3 VALVE) 5VDM (5 VALVE)
Head with integral Valve Manifold (3 or 5) for fitting of transmitter by others. Transmitter fitted by TFL refer to TRIBAR, see page 16	301, 311, 401, 402, 411, 412, 511, 512, L601, L701, L702, H601, H701, H702, H611, H711, H712	32mm Thick	DM3V DM5V
PT100 Temperature Element fitted through TORBAR head. For Hazardous Area Installations specify certification required. Maximum pressure 70 bar.	401, 402, 411, 412, 511, 512, L601, L701, L702, H701, H702, H611, H711, H712,	NO LONGER AVAILABLE	RTB Without Transmitter RTT With Transmitter
PT100 Temperature Element fitted through TORBAR neck. For Hazardous Area Installations specify certification required.	401, 402, 411, 412, 511, 512, L601, L701, L702, H701, H702, H611, H711, H712,	When specified with DM3V Head and integral DP Transmitter, refer to TRIBAR on page 16	NRTB Without Transmitter NRTT With Transmitter
Flanged Pipe Fittings (Stand-Off). Material is specified by "Pipe Fitting Material" in Model Number. Type, Size & Rating is specified with Model Number	311, 411, 412, 511, 512, H611, H711, H712, H811, H812	Note: Length "SO" is given on page 9	FS FE Flanged end support
Stud Bolts, Nuts & Gasket	311, 411, 412, 511, 512, H611, H711, H712, H811, H812	Standard Materials Stud, Bolts & Nuts: A193-B7/A 194-2H Gasket: Asbestos Free Glass/Aramid Fibre/Nitrile For Other Gasket Material: Specify	SBG SBGS
Thin duct wall Mounting Plate. Recommended for large ducts with wall thickness of less than 2mm	301, 401, 402, L601, L701, L702, H601, H701, H601, H702	100mm x 100mm 2mm Thick	DF
Gear Retraction Assembly (Material: 316L Stainless Steel)	H701, H702, H601, H611, H711, H712, H811, H812		GR
Bi-Directional Probe	401, 402, 411, 412, 511, 512, L701, L702, H701, H702, H711, H712, H811		ВW

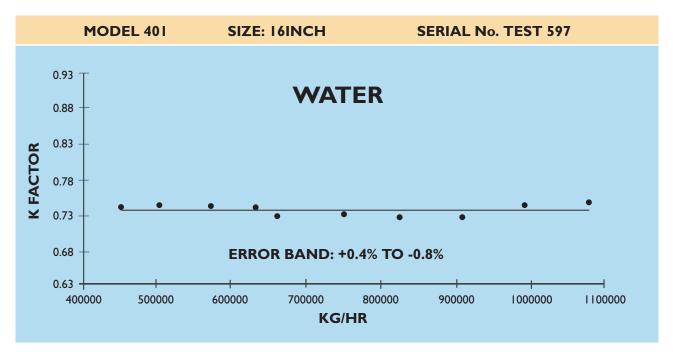

FLANGED STANDOFF DIMENSIONS
(ACCESSORY FS)
OVERALL LENGTH SO (mm)

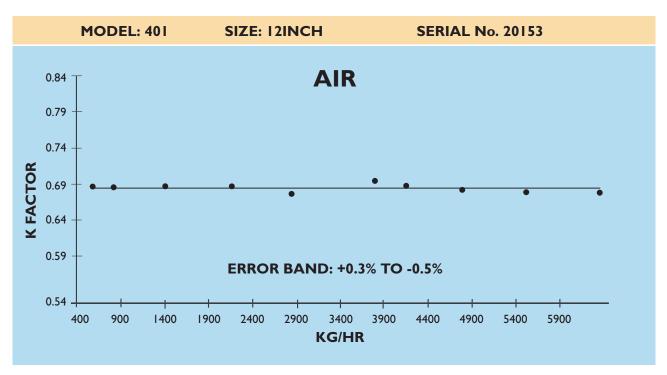
ANSI		S	IZE	
CLASS	1"	1½"	2"	3"
150	83	95	102	118
300	89	100	108	127
600	95	109	117	137
900	106	122	146	156
1500	106	122	146	171
2500	122	150	171	222

DIN	SIZE			
CLASS	DN25	DN40	DN50	DN80
PN10	67	78	86	98
PN16	67	78	86	98
PN25	67	78	86	98
PN40	67	78	86	106
PN50	89	101	108	127
PNII0	89	103	111	131
PN150	100	116	140	150
PN260	100	116	140	165

	FLANGED ISOLATION VALVE OVERALL LENGTH LV (mm)					
		ANSI	CLA	SS		
4E	150	300	600	150		

		ANSI	CLA	S S
SIZE	150	300	600	1500
1"	127	165	216	254
1½"	165	191	241	305
2"	178	216	292	368
3"	203	283	355	381




WITHDRAWABLE TYPES (HOT-TAPS) INSERTED AND RETRACTED LENGTHS (ALLOWS 5% FOR TOLERANCING) (mm)

L601	Inserted Retracted	ID + 236 INSERTED + ID + WALL + 211		
L701	Inserted Retracted	ID + 346 INSERTED + ID + WALL + 208		
L702	Inserted Retracted	ID + WALL + 37I INSERTED + ID + WALL + 233		
H601 H701	Inserted Retracted	ID + 493 INSERTED + ID + 355	• •	RETRACTED
H702	Inserted Retracted	ID + WALL + 518 INSERTED + ID + WALL + 380	Q	RETE
H611 H711	Inserted Retracted	ID + WALL + 2(SO + LV) + 340 INSERTED + ID + WALL + SO + LV	INSERTED	
H712	Inserted Retracted	ID + 2(WALL + SO + LV) + 380 INSERTED + ID + WALL + SO + LV + 40		
H811	Inserted Retracted	ID + WALL + 2(SO + LV) + 355 INSERTED + ID + WALL + SO + LV		
H812	Inserted Retracted	ID + 2(WALL + SO + LV) +419 INSERTED + ID + 2x WALL + SO + LV + 60		

A range of TORBAR models and sizes have been tested at Independent Flow Laboratories to determine the accuracy and repeatability of measurement.

Those test were conducted in both Air and Water.

Full details of the test results above and of those shown in the table below are available on request.

TEST FLUID	MODEL	SIZE	SERIAL NUMBER	ERROR BAND
WATER	123	2"	TEST 197	+0.2 TO -0.43%
WATER	301	4"	TEST 297	+1 то -1%
AIR	401	6"	TEST 397	+0.1 TO -0.5%
AIR	402	18"	20186	+0.6 то -0.5%
WATER	411	24"	TEST 697	+0.3 TO -0.4%

FLOW TO DP

LIQUIDS (Volumetric) mbar

K x A x 4.6285

GASES (Volumetric)

$$DP = \left[\frac{S \times (Tf + 273)}{Pf}\right] \left[\frac{QB}{K \times A \times 66.839}\right]^{2} mbar$$

LIQUIDS / GASES / STEAM (Mass)

$$DP = \left[\frac{QC}{K \times A \times \sqrt{D \times 4.6285}} \right]^{2} mbar$$

SYMBOLS & UNITS

QA = Flow (m³/hr)

QB = Flow (Nm3/hr) at 0°C, I atms (1.013 bar)

OC = Flow (kg/hr)

S= Specific Gravity (Air = I)

D= Density at actual conditions (kg/m3) Base Density of water at 4°C = 999.972 kg/m³

Density of water at 15.55°C = 999.012 kg/m³ Base Density of Air at 0°C

I ATMOS (I.013 bar) = I.292 kg/m³

A = Pipe internal X-Section Area (cm2)

Tf= Actual Temperature (°C) Pf= Actual Pressure (bar Absolute)

Torbar Co-efficient (see table) K =

Copies of the derivations of these formulae are available on request THE CALCULATION SOFTWARE (TORWIN) IS AVAILABLE FREE OF CHARGE BY POST OR E-MAIL. ALSO DOWNLOADABLE FROM OUR WEBSITE

TORBAR CO-EFFICIENT K

	MODEL NUMBER					
PIPE SIZE	301 601	401 402	511 512			
(Internal	311	411 412	811 812			
diameter)	611	701 702				
		711 712				
(mms)						
50	0.6483					
75	0.7027					
100	0.7497	0.6174				
150	0.7671	0.6505				
200		0.6647				
250		0.6794	0.6876			
300		0.6941	0.7024			
350		0.7160	0.7303			
400		0.7380	0.7564			
450		0.7402	0.7699			
600		0.7468	0.7815			
900		0.7473	0.7847			
1200		0.7475	0.7849			
1500		0.7476	0.7850			
1800	and above	0.7476	0.7850			

FOR SIZES NOT SHOWN ABOVE, DETERMINE K BY **EXTRAPOLATION**

For Models 121, 122, 123 (all sizes) K = I

IT IS IMPORTANT THAT THE ANSWERS FROM THESE **EQUATIONS ARE VERIFIED WITH THE FACTORY OR TORBAR** ACCREDITED SUPPLIER BEFORE USE WITH YOUR SYSTEM

DP TO FLOW

LIQUIDS (Volumetric)

$$Flow(Q) = \sqrt{DP} \times \left[\frac{KxAx4.6285}{\sqrt{D}} \right] m^3/hr$$

GASES (Volumetric)

Flow(Q) =
$$\sqrt{DP} \times \left[\frac{\sqrt{Sx4.0323x\sqrt{Pf}}}{\sqrt{Sx4.0323x\sqrt{Pf}}} \right] Am^3/hr$$
(Actual conditions)
or

Flow(Q) = $\sqrt{DP} \times \left[\frac{KxAx66.839x\sqrt{Pf}}{\sqrt{Sx\sqrt{(Tf+273)}}} \right] Nm^3/hr$
(Normal conditions)

LIOUIDS / GASES / STEAM (Mass)

Flow(Q) = $\sqrt{DP} \times (KxAx\sqrt{Dx4.6285}) \text{ kg/hr}$

SYMBOLS & UNITS

- Differential Pressure (mbar) DP
- Specific Gravity (Air = 1) D
 - Density at Actual Conditions (kg/m³) Base Density of Water at 4°C 999.972 kg/m³ Density of Water at 15.55°C 990.012 kg/m³
 - Density of Air at 0°C 1.292 kg/m³ Pipe Internal x-section Area (cm²)
- Tf Actual Temperature (°C)
- Actual Pressure (Bar A) (Absolute)
- κ TORBAR Co-Efficient (see Table)

Normal Conditions 0°C, I Atmosphere (1.013 bar)

STATEMENT OF ACCURACY: The calculated differential pressure will lie within an uncertainty band of +/- 1% with 95% confidence if the TORBAR is installed strictly in accordance with the published Installation Instructions. For applications which do not conform to those instructions, it is recommended that an on site calibration is performed in order to achieve the optimum accuracy.

RESONANCE FREQUENCY CHECK

This check is not necessary for LIQUID FLOWS. because the maximum allowable DP is reached before resonance occurs (see table opposite) or Models 121, 122, and 123 For Gas and Vapour flows a Resonance Frequency Check MUST be made. Equations have been derived for the various TORBAR models to determine LOW and HIGH critical velocities (VL and VH) which define the narrow resonance band of velocities which should be outside the continuous operating flow range of the TORBAR.

The table below lists those equations to calculate the VL and VH. If the calculation shows VL to VH to be within the continuous operating flow range, then an alternative, suitable model of TORBAR should be selected to give acceptable values of VL and VH.

Always check that the maximum flow DP is less than the 'Maximum Allowable DP' as shown in the opposite table.

TORBAR	CRITICAL	VELOCITIES	UNSUPPORTED LENGTH
MODEL	VL (M/SEC)	VH (M/SEC)	L (METRES) (see below)
301	0.472 ÷ L ²	0.728 ÷ L ²	ID + WALL + 0.05
311	$0.472 \div L^2$	$0.728 \div L^2$	ID + WALL + SO
L601	$0.472 \div L^2$	$0.728 \div L^2$	ID + WALL + 0.02
401	$1.843 \div L^{2}$	$2.840 \div L^{2}$	ID + WALL + 0.08
402	8.08 ÷ L ²	12.44 ÷ L ²	ID + 2 x WALL + 0.115
411	$1.843 \div L^{2}$	$2.840 \div L^{2}$	ID + WALL + SO
412	$8.08 \div L^2$	12.44 ÷ L ²	ID + 2 x WALL + SO + 0.05
L701	1.843 ÷ L ²	$2.840 \div L^{2}$	ID + WALL + 0.05
L702	$8.08 \div L^2$	12.44 ÷ L ²	ID + 2 x WALL + 0.10
H601	$0.472 \div L^2$	$0.728 \div L^2$	ID + WALL + 0.05
H701	$1.843 \div L^{2}$	$2.840 \div L^{2}$	ID + WALL + 0.05
H702	$8.08 \div L^{2}$	12.44 ÷ L ²	ID + 2 x WALL + 0.10
H611	$0.472 \div L^2$	$0.728 \div L^2$	ID + WALL + SO + LV + 0.05
H711	$1.843 \div L^{2}$	$2.840 \div L^{2}$	ID + WALL + SO + LV + 0.05
H712	$8.08 \div L^2$	12.44 ÷ L ²	ID + 2 x WALL + SO + LV + 0.10
511	10.88 ÷ L ²	16.766 ÷ L ²	ID + WALL + SO
512	$47.65 \div L^2$	$73.43 \div L^2$	ID + 2 x WALL + SO + 0.08
H811	10.88 ÷ L ²	16.766 ÷ L ²	ID + WALL + SO + LV + 0.05
H812	$47.65 \div L^2$	$73.43 \div L^2$	ID + 2 x WALL + SO + LV + 0.13

UNSUPPORTED LENGTH (METRES) ID = PIPE INTERNAL DIAMETER (METRES) WALL =

PIPE WALL THICKNESS (METRES) OVERALL LENGTH OF FLANGED PIPE FITTING (METRES) (See page 9) I V = OVERALL LENGTH OF ISOLATION VALVE (METRES) (See page 9)

THE ABOVE FOUATIONS ARE DERIVED FROM TORBAR RESONANCE FREQUENCY DATA AND CALCULATIONS, FULL DETAILS ARE AVAILABLE ON REQUEST

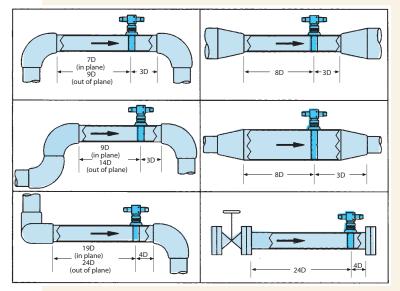
MAXIMUM ALLOWABLE DP

Depending on the model and size of TORBAR there is a maximum figure of Differential Pressure above which the TORBAR should NOT be used due to the imposition of excessive mechanical stresses. Check the table below to ensure that the application is suitable. If the calculated DP exceeds the maximum shown below, then select an other appropriate model to suit the application. For Bi-Directional configurations (accessory code BW), use 50% of the figures in this table.

FOR LIQUID FLOW APPLICATIONS WHERE THERE IS A POSSIBILITY OF PROCESS PULSATIONS OR INTERMITTENT EXCESSIVE FLOW VELOCITY, THEN THE END-SUPPORT MODELS SHOULD ALWAYS BE SELECTED FOR PIPE SIZES OVER 250mm DIAMETER (400 AND 700 SERIES) AND 600mm (500 AND 800 SERIES).

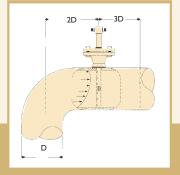
	PIPE SIZE (Internal Dia.)		TORBAR BASE MODEL NUMBER *					
			301 311 601 611	401 411 701 711	402 412 702 712	511 811	512 812	
	(ins)	(mms)	Maximum allowable DP in mbar					
	2	50	6250					
	3	75	2790					
	4	100	1565	5100				
	6	150	695	2285				
	8	200		1285				
	10	250		820	3250	3400		
	12	300		570	2250	2350		
	14	350		415	1680	1725		
	16	400		320	1285	1335		
	18	450		250	1015	1055	4225	
	24	600		140	570	590	2375	
	36	900		50	250	265	1055	
	48	1200		30	140	145	590	
	60	1500		20	90	90	380	
	72	1800		10	60	65	265	
	Lava 1800 and a samula factoria							

Above 1800 mm - consult factory


FOR SIZES NOT SHOWN ABOVE DETERMINE MAXIMUM ALLOWABLE DP BY

*For models 121, 122, 123 (all sizes) Maximum DP value is 2500 mbar.

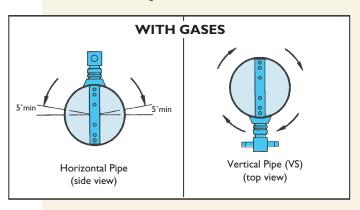
THE ABOVE FIGURES ARE THEORETICALLY DERIVED AND INCLUDE A XIO SAFETY FACTOR OVER AND ABOVE BASIC STANDARDS AND SPECIFICATION. FULL THEORETICAL DATA IS AVAILABLE ON REQUEST


INSTALLATION & LOCATION

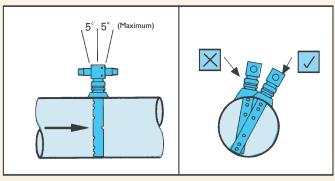
RECOMMENDED UPSTREAM & DOWNSTREAM DISTANCES

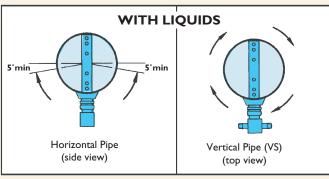
Correct location of the **TORBAR** in the piping system is important in order to optimise performance. Flow that is disturbed by upstream configurations such as elbows, T's and valves may have an adverse effect on accuracy unless the **TORBAR** is located at recommended positions shown in the table opposite. The diagrams illustrate the distances in multiples of pipe bore 'D' between the **TORBAR** and the upstream and downstream disturbances. If the **TORBAR** is fitted within distances less than those shown, then absolute accuracy may be downgraded BUT repeatability of measurement will still be excellent due to inherent averaging characteristics.

Where it is not possible to provide the specified distances and maximum accuracy is required, the use of a flow straightening spool piece allows for shorter distances.

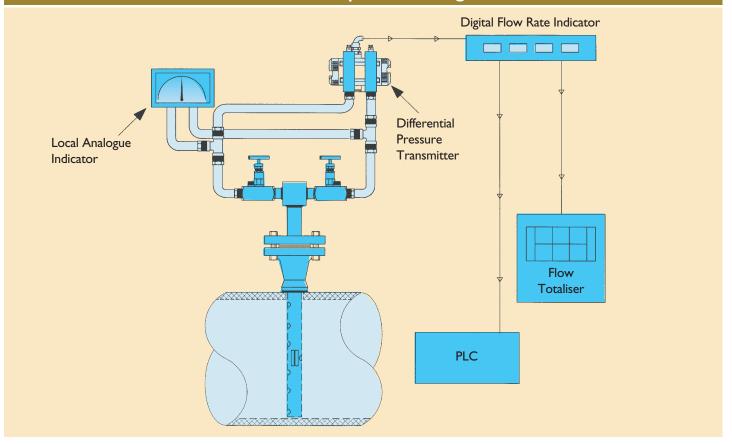

ELBOW INSTALLATION (Right)

The **TORBAR** can be installed 2 diameters downstream of a 90° elbow at the exit of the elbow to give an accuracy of +/-3% to +/-5%.


ORIENTATION IN PIPE

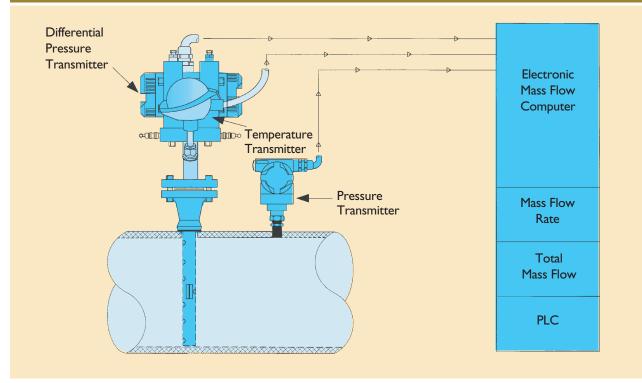

The **TORBAR** must be installed at right angles to the pipe run and across a pipe diameter within the tolerances shown in the diagrams opposite.

To avoid 'noisy' signal outputs, do not locate the **TORBAR** in a pulsating flow. A vibrating pipe can also distort the output signal and affect the structural limits of the **TORBAR**. This limitation particularly applies to the integrally mounted transmitter option DM3V and to the TRIBAR configuration



For vertical pipe applications, the 'head' of the **TORBAR** is repositioned to ensure that DP connections are at the same vertical level. This is option VS. IT IS NECESSARY TO SPECIFY THIS OPTION WHEN ORDERING THE TORBAR.

IT IS ESSENTIAL THAT IN ALL STEAM INSTALLATIONS THE ENTIRE TORBAR HEAD AND FITTING ASSEMBLY ARE WELL LAGGED TO PREVENT THE FORMATION OF CONDENSATE IN THE TORBAR HEAD. THE TORBAR WILL NOT FUNCTION CORRECTLY WITH CONDENSATE IN THE HEAD. FILLING T'S OR CONDENSATE POTS SHOULD BE FITTED AS APPROPRIATE.


Before installation or removal of a **TORBAR** it is imperative that careful reference is made to the appropriate installation instructions that are supplied with each **TORBAR** shipment. The installation instructions are also available separately on request.

VOLUMETRIC flow measurement with TORBAR Alternative output configurations

Abbreviated details of the **TORBAR** installation are shown on page 12, but the Installation and Operating Instructions manual should be referred to before making a final installation. Copies are available on request.

MASS FLOW measurement with TRIBAR Using remote flow Computer

The above diagram shows how the **TRIBAR** can be used to complete a **MASS FLOW LOOP**. Alternatively, the **MASS TRIBAR** can be considered as a totally integrated package.

• Full details of the **TRIBAR** are on pages 16 & 17 • Full details of the **MASS TRIBAR** are on pages 18 &19

APPLICATIONS

Thousands of TORBARS have been successfully used on a large variety of flow applications throughout the world by many different industries, such as:

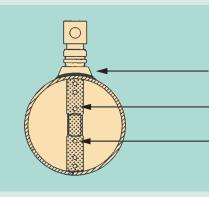
- OIL PRODUCTION (ONSHORE, OFFSHORE)
- OIL REFINING
- CHEMICAL
- PHARMACEUTICAL
- POWER GENERATION
- BUILDING SERVICES
- · H V A C

- NUCLEAR
- FOOD
- WATER DISTRIBUTION
- WATER TREATMENT
- EFFLUENT TREATMENT
- GAS PROCESSING
- GAS TRANSMISSION

etc. etc.

Applications where TORBARS have been used successfully were for the flow measurement of:

- NATURAL GAS
- FLUE GAS (REQUEST SG3000)
- NITROGEN GAS
- HYDROCARBON GAS
- METHANE GAS
- COMBUSTON GAS
- SOUR GAS
- EXHAUST GAS
- COKE OVEN GAS
- CARBON DIOXIDE GAS SUPERHEATED STEAM and many other...

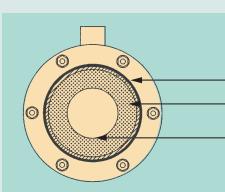

- PETROL VAPOUR
- VENTILATION AIR
- COMPRESSED AIR
- HOT AIR
- SOLVENT LADEN AIR
- SATURATED AIR

••••••

- SATURATED STEAM

- SEA WATER
- COOLING WATER
- RIVER WATER
- WASTE WATER
- POTABLE WATER
- LIQUID OXYGEN
- CRUDE OIL NITRIC ACID
- RED WINE
- LIQUID PETROLEUM

COST SAVINGS TORBAR V ORIFICE PLATE



TORBAR

Low Installation Cost

Low Pressure Loss - LOW ENERGY CONSUMPTION

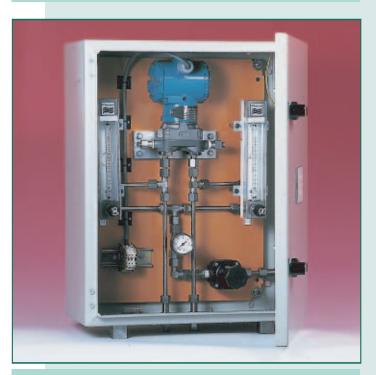
Long Term Accuracy - LOW MAINTENANCE COST

ORIFICE-PLATE

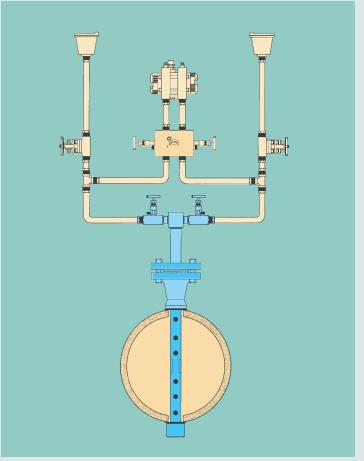
High Installation Cost

High Pressure Loss - HIGH ENERGY CONSUMPTION

Short Term Accuracy - HIGH MAINTENANCE COST


SPECIAL CONFIGURATIONS

The **TORBAR** and **TRIBAR** flow meters are well suited for special configurations to satisfy customer applications and specifications. Qualified engineering staff and sophisticated computer facilities enable the rapid and accurate translation of the customer requirements into a reliable product.


On this page are shown a few examples of this engineering capability.

WITHDRAWABLE (HOT-TAP) TORBAR WITH GEARED RETRACTION AND INTEGRAL 3 VALVE MANIFOLD.

CONTINUOUS AIR PURGE SYSTEM (CS900) FOR USE WITH A TORBAR MEASURING CONTAMINATED GAS FLOWS. FOR HIGH LEVELS OF CONTAMINATION THE AUTOMATIC PURGE UNIT (PS600) IS AVAILABLE. MORE DETAILS ARE AVAILABLE ON REQUEST.

AUTOMATIC AIR VENTING PACKAGE FITTED TO TORBAR IN ORDER TO REMOVE THE AIR WHEN THE TORBAR IS INSTALLED VERTICALLY DOWNWARDS IN LIQUID FLOW

SYSTEM FOR STACK GAS FLOW MEASUREMENT.
COMPLETE WITH AUTOMATIC PURGING AND PRESSURE
AND TEMPERATURE COMPENSATION. REQUEST DETAILS
OF PS600T-MV PACKAGE.

TOTAL METER PACKAGE

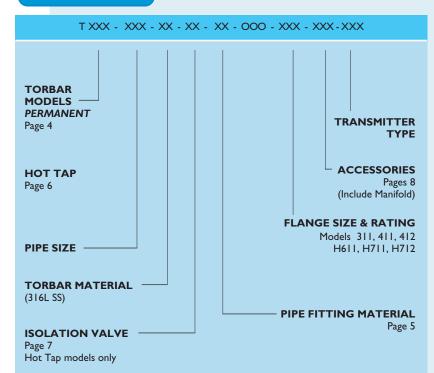
DESCRIPTION

TRIBAR

The **TRIBAR** is the established and proven flowmeter from Torbar Flowmeters Ltd, the company that developed and perfected the **TORBAR** technology.

The **TRIBAR** is an accurate insertion flowmeter comprising of an integral 3 valve manifold and industry standard transmitter connected to a **TORBAR** averaging insertion element.

The **TRIBAR** is suitable for the flow measurement of most liquids and gases at process temperatures of less than 160°C. It is not recommended for steam flow due to the temperature specification of the transmitter. This restriction of use applies to all flowmeters of this type.


For steam flow and other applications which fall outside of the **TRIBAR** specifications, the transmitter and manifold should be mounted remotely from the **TORBAR** as shown on page 13. Please contact TFL or agent for details.

The **TRIBAR** concept provides several economic and operational advantages.

- SIMPLE ONE OR TWO HOLE INSTALLATION
- COMPACT CONSTRUCTION
- LOW PRESSURE LOSS/LOW OPERATING COSTS
- COMPETITIVE PRICING
- ZERO TRANSMISSION LAGS

The **TRIBAR** is available WITHOUT the transmitter which can be fitted by the customer (or TFL agent). For this optional arrangement specify a standard **TORBAR** with DM3V (integral manifold) option (see page 8). Also specify the manufacturer and type of transmitter to be fitted.

MODEL CODING

TEMPERATURE MEASUREMENT

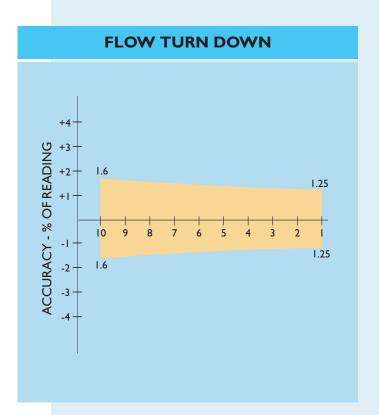
The **TRIBAR** can be supplied with an RTD element with or without a Transmitter. Refer to page 8 code NRTB or NRTT.

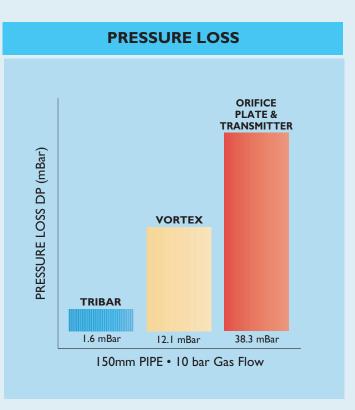
Also see page 13 for typical application.

INSTALLATION & LOCATION

For basic information about the installation and location of the **TRIBAR** refer to page 12.

SPECIFICATIONS & OPTIONS


- FLOWMETER TYPE: Insertion
- REFERENCE ACCURACY: +/- 1.25%
- REPEATABILITY OF MEASUREMENT: 0.1%
- FLOW TURNDOWN: 10:1
- PIPE SIZES: 5 to 4000mm
- INTEGRAL MANIFOLD: 3 valve-stainless steel
- PROCESS MOUNTING: Compression or flanged
- INSTALLATION OPTION:
 By Hot-tapping under pressure
- WETTED PARTS: 316 stainless steel
- MAXIMUM PRESSURE:
 300 bar
- MAXIMUM TEMPERATURE: 160°C at process


DP TRANSMITTER PROGRAMMABLE AND SMART

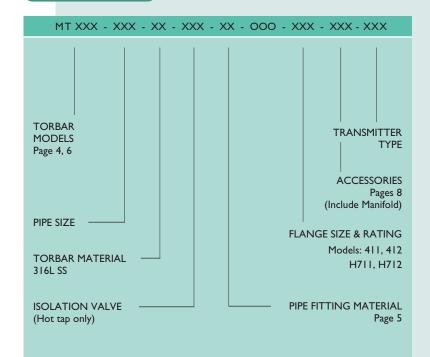
- SUPPLY: IIV 45 VDC (AC optional)
- OUTPUT: 4 to 20 mA with Hart 5.1 superimposed (optional PROFIBUS PA)
- MINIMUM DP RANGE: 0-1 mbar to 0-20 mbar
- CERTIFICATION: Intrinsically Safe Eexialle T4/T5/T6
- ELECTRONICS HOUSING:
 Coated die-cast Aluminium (option stainless steel)
- INGRESS PROTECTION: IP65 (option IP68)
- CABLE ENTRY: M20 X 1.5 cable gland
- CALIBRATION CERTIFICATE: Available as option
- NACE CERTIFICATE: Available as option

EASIER ON-SITE COMMISSIONING WITH CURRENT GENERATOR OUTPUTS (3.6, 4, 12, 20mA)

SIMPLE PUSH BUTTON CALIBRATION WHICH CAN BE USED IN HAZARDOUS AREAS
FULL WARRANTY COVER BY TFL SUPPORTED BY AGENTS WORLDWIDE

COMPENSATED MASS FLOWMETER

DESCRIPTION


The MASS TRIBAR is an insertion flowmeter comprising an integral valve manifold a PT100 temperature element and a Smart Multivariable Transmitter attached to a TORBAR averaging flow element.

The MASS TRIBAR measures pressure, temperature and differential pressure directly from the TORBAR and computes the compensated mass flow within the MV transmitter by automatically compensating for fluctuations in temperature and pressure.

The MASS TRIBAR is ideally suited for the flow measurement of liquids and gases and the totally integrated concept provides several direct advantages.

- AVERAGED FLOW PROFILE MEASUREMENT
- SIMPLE ONE OR TWO HOLE INSTALLATION
- COMPACT INTEGRAL CONSTRUCTION
- RTD EASILY REMOVABLE FOR MAINTENANCE
- ZERO TRANSMISSION LAGS
- LOW PRESSURE LOSS/LOW OPERATING COSTS
- SINGLE PRODUCT SOURCING

METER CODING

MASS TRIBAR

APPLICATION LIMITATION

For steam flow and other applications which fall outside of the MASS TRIBAR specifications, the multivariable transmitter and manifold should be mounted remotely. Please contact TFL or Agent for details of that arrangement.

INSTALLATION & LOCATION

For the basic information about the installation and location of the MASS TRIBAR refer to page 12.

Refer to the MV Transmitter data sheet for the transmitter calibration and set-up information and procedures.

PRESSURE - TEMPERATURE - FLOW
THE MASS TRIBAR CAN DO IT ALL

COST SAVINGS

With the MASS TRIBAR configuration, you can expect substantially lower wiring costs, as well as much less capital spending on piping, manifolds, mounting, safety barriers and the like. With four measurements from one instrument you will be driving down the installed cost of flow compensation by as much as 60%. Also the MASS TRIBAR may totally eliminate the need for a mass flow computer and can free your control system from performing complex flow calculations. The compensated flow calculation is done right in the instrument before it sends data to your control room freeing up your automation system for other process control tasks.

Because it has been difficult and expensive to directly measure flow, most applications infer flow. Inferential flow calculations assume pressure and temperature remain constant, which is often extremely misleading and gives rise to large inaccuracies. THIS TRANSLATES TO LOST PROFITS. Accurate, reliable measurements of flow are essential to ensure your company meets customer quality demands, minimises expenses and increases your bottom line profitability.

MASS TRIBAR

SPECIFICATION

- ACCURACY: +/-1% FLOW +0.1% OF CALIBRATED SPAN
- REPEATABILITY OF MEASUREMENT: 0.2%
- FLOW RANGE TURNDOWN: 10 TO 1
- TEMPERATURE ELEMENT: RTD 4 WIRE
- MAXIMUM PRESSURE: 100 Bar
- MAXIMUM TEMPERATURE AT MANIFOLD/TRANSMITTER FACE: 80°C
- MINIIMUM TEMPERATURE AT MANIFOLD/TRANSMITTER FACE: -50°C
- AMBIENT TEMPERATURE RANGE:
 -40°C TO 85°C
- SYSTEM: 2 WIRE (DCIIV 45V) EXTERNAL POWER SUPPLY REQUIRED

- OUTPUT: 2 WIRE 4 TO 20 mA LINEAR TO MASS FLOW
- DIGITAL HART PROTOCOL AVAILABLE TO HOST
 WHICH CONFORMS TO THE HART PROTOCOL
- PRESSURE, TEMPERATURE AND DP VARIABLES
 ARE AVAILABLE THROUGH HART
- PROCESS INDICATOR: INTEGRAL, 2LINE, 6CHARACTER
- PROTECTION: IP67. EEXia I I CT4/T5/T6
- WETTED PARTS: 316L STAINLESS STEEL
- PIPE SIZES: 100mm TO 8000mm
- DIFFERENTIAL PRESSURE RANGES: 0.5/10mbar TO 1/100bar
- STABILITY: +/-0.1% URL FOR 12 MONTHS
- FOR MORE DETAILED SPECIFICATIONS REFER TO THE TRANSMITTER SPECIFICATION SHEET

TORBAR FLOW METERS LTD

Care off:

Darlas Electronic Applications SA, 5 Kimonos Str, 122 44 Egaleo – Athens – Greece Telephone: + 30-210-59.86.179, Facsimile: +30-210-59.11.161 e-mail: darlas@darlas.gr Web: http://www.darlas.gr, http://www.odme.gr